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And now a moment of silence...

...before we present...

...a beautiful result of probability theory!

Silence!!



Four Prototypical Trajectories

Central Limit Theorem
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The sum of independent, identically 
distributed variables:

Y ⇠ N(nµ, n�2)

where

Is normally distributed:
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• Consider n random variables X1, X2, ... Xn
§ Xi are all independently and identically distributed (I.I.D.)
§ All have the same PMF (if discrete) or PDF (if continuous)
§ All have the same expectation
§ All have the same variance

IID Random Variables

IID iid
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Sum of Two Dice

Xi is the outcome of dice roll i

Xi s are
iid
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Sum of Three Dice

Xi is the outcome of dice roll i

Xi s are
iid
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Four Prototypical Trajectories

Demo
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C.L.T. Intuition
This is the PMF of the sum of one dice
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C.L.T. Intuition
This is the PMF of the sum of two dice

Why is there more mass in the middle?
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C.L.T. Intuition
This is the PMF of the sum of three dice

Why is there more mass in the middle?
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Four Prototypical Trajectories

Other Functions?
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sum of 
samples 

of size 15
sum of 
samples 

of size 15

C.L.T. Explains This



C.L.T. Explains This
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• Consider I.I.D. Bernoulli variables X1, X2, ... With 
probability p
§ Xi have E[Xi] = p and Var(Xi) = p(1-p)

Binomial Approximation

X̄ ⇠ N(µ,�2) as n ! 1

Y ⇠ N(np, np(1� p)) Substituting mean and 

variance of Be
rnoilli

Central Limit Theorem
Y ⇠ N(nµ, n�2)

Y is the sum of 

the Bernoulli
s



Calculate the probability of a 
marble landing in a bucket.

PDF

We can define an indicator 
random variable (B) which 
represents what bucket a marble 
lands in. 

C.L.T. Explains This

0 1 2 3 4 5
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The sum of independent, identically 
distributed variables:

Y ⇠ N(nµ, n�2)

where

Is normally distributed:



• The proof of the CLT uses the Fourier transform of the 
probability mass of the sample distance from the mean, 
divided by standard deviation, and shows that this 
approaches an exponential function in the limit:

• That exponential function is in turn the Fourier transform 
of the Standard Normal. The Fourier transform of a 
probability density function is called a Characteristic 
Function.

• The proof is beyond the scope of CS109.

On the Proof of the CLT

f(x) = e�
x2

2



• CLT is why some things in “real world” appear 
Normally distributed
§ Many quantities are sum of independent variables
§ Exams scores

o Sum of individual problems on the SAT
o Why does the CLT not apply to our midterm?

§ Election polling
o Ask 100 people if they will vote for candidate X (p1 = # “yes”/100)
o Repeat this process with different groups to get p1, ... , pn

o Will have a normal distribution over pi

o Can produce a “confidence interval”
• How likely is it that estimate for true p is correct

Central Limit Theorem in the Real World



What about other functions?

Sum of iid? Normal

Average of iid? 

Max of iid? 



• Consider I.I.D. random variables X1, X2, ...
§ Xi have same distribution with E[Xi] = µ and Var(Xi) = s

2

§ Let: 

§ Central Limit Theorem:
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The Central Limit Theorem

http://onlinestatbook.com/stat_sim/sampling_dist/

http://onlinestatbook.com/stat_sim/sampling_dist/


• Consider I.I.D. random variables X1, X2, ...
§ Xi have distribution F with E[Xi] = µ and Var(Xi) = s2

But Wait! There is More

Y =
nX

i

XiX̄ =
1

n

nX

i

Xi

Y ⇠ N(nµ, n�2)

Linear transform of a normal

By CLT

X̄ ⇠ N(µ,
�2

n
)
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By the Central Limit 
Theorem, the sample 
mean of IID variables are 
distributed normally.

X̄ ⇠ N(µ,
�2

n
)
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What about other functions?

Sum of iid? Normal

Average of iid? Normal 

Max of iid? 
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What about other functions?

Sum of iid? Normal

Average of iid? Normal 

Max of iid? Gumbel 
See Fisher Trippett Gnedenko Theorem



1733

Once Upon a Time…
Abraham De Moivre



• History of the Central Limit Theorem

§ 1733: CLT for X ~ Ber(1/2) postulated by           

Abraham de Moivre

§ 1823: Pierre-Simon Laplace extends de Moivre’s

work to approximating Bin(n, p) with Normal

§ 1901: Aleksandr Lyapunov provides precise                   

definition and rigorous proof of CLT

§ 2016: Beyonce releases Lemonade

o It was her 6th album, bringing her total number of songs to 214

o Mean quality of subsamples of songs is Normally distributed 

(thanks to the Central Limit Theorem)

Once Upon a Time…



• Have new algorithm to test for running time
§ Mean (clock) running time: µ = t sec.
§ Variance of running time: s2 = 4 sec2.
§ Run algorithm repeatedly (I.I.D. trials), measure time

o How many trials s.t. estimated time = t ± 0.5 with 95% certainty?
o Xi = running time of i-th run (for 1 £ i £ n),      is the mean

Estimating Clock Running Time

X̄

By CLT

By linear transform of a normal

0.95 = P (�0.5 < X̄ � t < 0.5)

X̄ ⇠ N(µ,
�2

n
) ⇠ N(t,

4

n
)

X̄ � t ⇠ N(0,
4

n
)
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William Sealy Gosset
(aka Student)



It’s play time!



• You will roll 10 6-sided dice (X1, X2, …, X10)
§ X = total value of all 10 dice = X1 + X2 + … + X10

§ Win if:  X £ 25  or  X ³ 45
§ Roll!

• And now the truth (according to the CLT)…

Sum of Dice



• You will roll 10 6-sided dice (X1, X2, …, X10)
§ X = total value of all 10 dice = X1 + X2 + … + X10

§ Win if:  X £ 25  or  X ³ 45

• Recall CLT:

§ Determine P(X £ 25 or X ³ 45) using CLT:

0784.0)9608.01(2)1)76.1(2(1 =-»-F-»

[ ]
12
35)(Var                  5.3 2 ==== ii XXE sµ

Sum of Dice

Y =
X

i

Xi ! N(nE[Xi], nVar(Xi)) As n ! 1X =
nX

i

Xi ! N(nµ, n�2)

X ⇡ N(35, 29.2)

1� P (25.5 < X < 44.5) = 1� P (
25.5� 35p

29.2
< Z <

44.5� 35p
29.2

)



I know of scarcely anything so apt to impress the 
imagination as the wonderful form of cosmic order 
expressed by the ”[Central limit theorem]". The law 
would have been personified by the Greeks and 
deified, if they had known of it. It reigns with serenity 
and in complete self-effacement, amidst the wildest 
confusion. The huger the mob, and the greater the 
apparent anarchy, the more perfect is its sway. It is 
the supreme law of Unreason. Whenever a large 
sample of chaotic elements are taken in hand and 
marshalled in the order of their magnitude, an 
unsuspected and most beautiful form of regularity 
proves to have been latent all along.

-Sir Francis Galton

Wonderful Form of Cosmic Order


